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Abstract. We estimate the total e+e− → t̃t̃ cross section near threshold for a Coulombic potential and
compare it to the Born approximation. The effect of the beam energy spread for present and future e+e−

colliders is discussed.

1 Introduction

In the standard model it has been shown that bound states
can be created for every quark but the top (see for instance
[1–5] and references therein). The latter possibility is ruled
out due to the high value of the top quark mass, which
is responsible for its short lifetime. The top quark decays
directly into a W boson and a b quark before being able
to create a bound state. In a recent paper [6] it has been
shown that a finite probability of formation exists for a
supersymmetric bound state made out of a squark stop
and an antitop squark, for a certain range of t̃ mass and
some regions of the MSSM parameter space. There, the
possibility of signal detection at an e+e− collider with
LEP and NLC characteristics has also been investigated
by means of a Breit–Wigner formula.

A more refined result is needed in the threshold region
which is characterized by low values of the squark velocity
β, i.e.

β =

√
1 − 4m2

t̃

s
� 1. (1)

For this purpose a by now standard Green function ap-
proach has been developed (see [1,7,8] and references
therein).

We will assume that the supersymmetric bound state
creation does not differ from the standard model case, as
the relevant interaction is driven by QCD and controlled
by the mass of the constituent squarks [6]. For this reason
the Schrödinger Green function technique is suitable for
treating the problem of the scalar bound state. It will
be used to compute the bound state effects on the cross
section of stoponium near threshold. We will compare the
results obtained in this manner to the Born cross section
estimates for energies above threshold. The effects of the
beam energy spread of the e+e− colliders on the computed
cross section will be discussed.
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2 The method

The basic idea of the method is to consider the
Schrödinger Green function equation [1]

(H − E)G(x,y, E) = δ(x − y), (2)

where H is the Hamiltonian of the system

H = −∇2
x

2m
+ V (x), (3)

and V (x) is the potential for the squarks. The imaginary
part of the derivative of the Green function given by (2)
taken at the origin is proportional to the cross section at
threshold [1,7,8]. The finite width Γ of the state is taken
into account by the substitution

E → E + iΓ. (4)

Unlike the process

e+e− → tt̄, (5)

the reaction
e+e− → t̃t̃ (6)

proceeds in the P -wave configuration, whereas top quarks
are produced in the S-wave configuration. This implies
that the Born level cross section will grow as σ ∼ β for
top production (5), while for the process (6) of scalars one
obtains a slower rise, σ ∼ β3.

The threshold cross section of the process e+e− → t̃t̃
is given by the following expression [9,10]:

σ(e+e− → t̃t̃) = R
πα2

s

[
Q̃2

γ +
(v2

e + a2
e)Q̃2

Z

4 sin2 2θW

× s2

(s − M2
Z)2 + M2

ZΓ
2
Z

×veQ̃γQ̃Z

sin 2θW

s(s − M2
Z)

(s − M2
Z)2 + M2

ZΓ
2
Z

]
, (7)
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where ve = −1 + 4 sin2 θW, ae = −1, MZ and ΓZ are
the mass and the total width of the Z boson, respectively.
The charges are defined by Q̃γ = −Q, Q̃Z = (cos2 θt̃ −
2Q sin2 θW) sin 2θW, θW being the standard electroweak
mixing angle and θt̃ the left–right mixing angle.

The R term of (7) is obtained [1,7,8] upon taking the
imaginary part of the derivative at the origin of the Green
function given by (2):

R =
1536
81

π

m4
t̃

�
[
∂

∂x

∂

∂y
G1(x,y, E)

]∣∣∣∣∣
x=0,y=0

(8)

(� stands for the imaginary part, while G1 is the l = 1
component of the Green function).

For the purpose of our investigation, we will use a
Coulombic potential for the Hamiltonian given in (3) (here
r = |x|):

V = −4
3
αs

r
, (9)

where αs is given by the QCD two-loop expression [11]

αs(Q2) =
4π

β0 log
[
Q2/Λ2

MS

]

×

1 − 2β1

β2
0

log
[
log

[
Q2/Λ2

MS

]]
log

[
Q2/Λ2

MS

]

 , (10)

and is calculated at a fixed value of the Bohr radius rB
given by

rB =
3

2mt̃αs
. (11)

The validity of this choice has been shown (see [5,6,12]
and references therein), and is essentially justified by the
fact that the stop quark should be much heavier than all
other quarks except (maybe) the top. The high value of mt̃
implies from (11) that the average distance between two
squarks inside the scalar bound state is small, and there-
fore the dominant term of the potential is the Coulomb
expression given in (9). This assumption for the bound
state potential allows us to obtain an analytic expression
for the Green function needed for the threshold cross sec-
tion [13].

Following the authors cited above we introduce some
standard notations: E = s1/2 − 2mt̃ is the energy dis-
placement from threshold, k2 = −mt̃E, λ = 3αsmt̃/2 is
the wavelength, and ν = λ/k is the wave number. Here the
argument of αs is taken to be at the soft scale 1/rB. The
finite width Γ of the bound state is taken into account by
means of the substitution given in (4).

The expression for the l = 1 Green function for the
Coulombic potential (9) is given by

G1(0, 0, k) =
mt̃

36π
λ

{
2(k2 − λ2)

[
k

2λ
+ ln

(
k

µf

)

+ 2γE − 11
6

+ ψ1(1 − ν)
]

+
k2

2

}
, (12)

where γE is the Euler constant (
 0.57721), and ψ1 is the
digamma function, ψ1(x) = d(lnΓ (x))/dx. The derivative
at the origin of (12) is obtained by the simple multiplica-
tive relation

∂

∂x

∂

∂y
G1(x,y, k)

∣∣∣∣
x=0,y=0

= 9G1(0, 0, k). (13)

Some caveats (as described in [13]) have to be consid-
ered for the case of the P -wave. There exists a constant
linear term in the decay width Γ contributing to the l = 1
Green function that cannot be properly computed in a
purely nonrelativistic framework [7]. The term indepen-
dent of k that has to be added to the Green function (12)
is given by

0.185
m3

t̃

36π
Γ (14)

and from [13] the µf argument of the logarithmic term in
(12) is given by 0.13mt̃ by means of an analysis of relativis-
tic perturbation theory. We note that the last two results
have been obtained only for the top quark case, and we
will assume that these results remain valid also for the
stop quark which has a high mass, presumably close to
that of the top quark. In any case the two aforementioned
terms do not contribute much to the Green function esti-
mates, since they are dominated by the leading k3 term
of (12).

3 Results and discussion

Our analysis of the threshold behavior of the cross section
should hold for a range of mass values and decay widths.
For the mass range, we will refer to the current stop mass
value limits [14] and the LEP capabilities, while for the
decay widths we have to take into account the formation
requirements of the bound state [6]. A criterion for the
formation of bound states is that the creation of a hadron
can occur only if the level splitting which depends upon
the strength of the strong force between the (s)quarks and
their relative distance [4], is larger than the natural width
of the state. This means that, if

∆E2P−1P ≥ Γ, (15)

where ∆E2P−1P = E2P − E1P and Γ is the width of the
would-be bound state, then the bound state exists. Per-
forming the analysis in this way allows us also to avoid
dealing directly with several parameters of the MSSM
model which are relevant to stop quark decay (apart from
the stop mass), namely the ratio of the two Higgs vacuum
expectation values tanβ, the Higgs–higgsino mass param-
eter µ and the wino mass M2 [10]. The only constraint
we have to impose is that the decay width be lower than
about 1 GeV, necessary for the scalar bound state creation
[6] regardless of the values assumed for the parameters
mentioned above.

As a first step, we check that the expression (12) used
for our potential model (9) is consistent with the Born
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Fig. 1. Comparison of the Green function method and the
Born level expression for the cross section, in the limit αs → 0.
Here we assume that cos2 θt̃ = 1,mt̃ = 100GeV and we assume
that we have a width of 0.5GeV

cross section for E > 0. We see in Fig. 1 that in the nonin-
teracting limit with αs → 0 the cross section given by (12)
tends to the usual Born expression, and is zero for E < 0.
This confirms the consistency of the expression found in
(7).

In Figs. 2 and 3 we present the results of the thresh-
old cross section for a LEP mass range, mt̃ = 60, 100 GeV.
We have chosen the left–right mixing angle to be such that
cos2 θt̃ = 1. From (7) it is possible to see that the cross
section minimum value is obtained for mt̃ = 100 GeV at
cos θt̃ 
 ±0.55, the point where the Z boson coupling
vanishes, which does not differ much from the maximal
value. As previously stated, assuming the decay width to
be smaller than 1 GeV, we show for each chosen mass for
widths of 10−3, 10−2, 10−1 and 1 GeV, respectively. The
cross sections are plotted against the threshold offset en-
ergy E, the center of mass energy being given by the re-
lation s1/2 = 2mt̃ + E.

For mt̃ = 60 GeV, Fig. 2 shows the structure of the
discrete energy levels for E < 0 versus decay width val-
ues given above. The maximal height of the peak, about
8400 fb, is obtained for the smallest width of 1 MeV. The
shapes of the peaks are similar to the one obtained by the
Breit–Wigner formula, except for the resonance tails that
are set higher with increasing energy. The height of the
peaks decreases drastically as the binding energy asymp-
totically reaches the E = 0 level. They tend also to accu-
mulate and merge towards the E = 0 value as the energy
increases; this happens when the distance of the two res-
onance peaks is of the order of the decay width. For the
Coulombic model the binding energy of the l = 1 level is
given by the expression

En = −4
9
mt̃α

2
s

n2 , n > 1, (16)

and the resonance peaks merge when

4
9
mt̃α

2
s

[
1
n2 − 1

(n + 1)2

]
∼ Γ. (17)

Fig. 2. Cross section at threshold for various decay widths
with mt̃ = 60GeV, cos2 θt̃ = 1. The center of mass energy is
s1/2 = 120GeV at threshold

Fig. 3. Cross section at threshold for various decay widths
with mt̃ = 100GeV, cos2 θt̃ = 1. The center of mass energy is
s1/2 = 200GeV at threshold

This means that the last visible peak has a quantum num-
ber n given by

2n + 1
n2(n2 + 1)

∼ 9Γ
4mt̃α

2
s

; (18)

we can see for instance in plot (2) that for Γ = 0.1 GeV the
n = 3 peak is already barely noticeable. For Γ = 1 GeV,
the limiting region of bound state formation [6], we see
that there is no visible structure; even the first peak is
smeared by the large width.

The continuum energy region E > 0 does not present
any fine structure, and remains essentially the same for
any given decay width. One important effect to be noted
is the large difference of the Green function result with re-
spect to the Born prediction for E > 0. This fact is shown
in Fig. 1 where the two estimates of the cross section are
compared. It is clearly seen that the former is about one
order of magnitude larger than the Born cross section.
This can be understood by the fact that the Green func-
tion technique takes into account the interaction between
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Fig. 4.Cross section at threshold for various decay widths
with mt̃ = 200GeV, cos2 θt̃ = 1. The center of mass energy is
s1/2 = 400GeV at threshold

Fig. 5.Cross section at threshold for various decay widths
with mt̃ = 500GeV, cos2 θt̃ = 1. The center of mass energy is
s1/2 = 1000GeV at threshold

the particles, and the contributions of the binding energies
accumulate towards the E = 0 energy level as described,
thus substantially affecting the continuum region as well.

In Fig. 3, we show the results for mt̃ = 100 GeV, with
the same parameters given in Fig. 2. The peaks are lower
than the previous case; in particular, the largest value of
the cross section is obtained for Γ = 1 MeV at about
2400 fb. The position of the peaks are shifted towards
lower values of the center of mass energy because the bind-
ing energy given by the expression (16) is higher.

For NLC energies, we present in Figs. 4 and (5) results
obtained for mt̃ = 200 GeV and mt̃ = 500 GeV, respec-
tively. The parameters have been chosen to be the same
as of the LEP case, and the qualitative behavior of the
threshold cross section is analogous. For mt̃ = 200 GeV,
the maximal value of the first peak obtained at Γ = 1 MeV
is about 450 fb, while for mt̃ = 500 GeV the highest peak
reaches only 90 fb. The position of the peaks is shifted
towards even lower energy values because of still higher

Table 1. Limits of the nonrelativistic approach. We give some
estimates on βMAX and EMAX as a function of the γ parameter
for various stop masses, indicated in brackets, in GeV units

γ βMAX EMAX(60) EMAX(100) EMAX(200) EMAX(500)

1.01 0.140 1.18 1.97 3.94 9.85
1.02 0.197 2.33 3.88 7.77 19.42
1.03 0.240 3.44 5.74 11.48 28.70

values of bound state binding energy, as can be verified
from (16).

We remark that all our results have been obtained
for the Coulombic potential (9). It is known that in the
threshold region there are singular Coulombic terms (αs/
β)n which spoil the finite order perturbation theory. The
resummation of these contributions has been done – see
[13] and references therein – and they give small contri-
butions and only slightly modify the Coulombic potential.
The effect on the cross section is quite small, as can be
seen from the plots in [13], and does not change our esti-
mates by more than a few percent.

Another point concerns the validity of the Schrödinger
Green function method (12). Since it is a nonrelativis-
tic procedure, we have to ensure that the velocity of the
squarks is low enough in order to make relativistic correc-
tions negligible. From kinematical arguments, it is possible
to give a bound for the maximal acceptable energy offset
EMAX. Assuming an upper value for the squark velocity,
βMAX, and the expression (1) together with the center of
mass energy parameterization, s1/2 = 2mt̃ + E, one ob-
tains by means of a series expansion in E

EMAX < mt̃β
2
MAX. (19)

In Table 1 we present some estimates on βMAX and EMAX
for different squark masses and some Lorentz γ parameter
values. We see that the limit of validity for the nonrela-
tivistic equation (2) lies in a range of a few GeV around
the threshold, and naturally increases with larger squark
masses; this can be intuitively understood since the heav-
ier the squark is, the slower will it rotate inside the bound
state [2,4–6].

The results obtained so far have to be folded with the
beam energy spread of the collider. For the LEP2 case,
which has a beam energy spread of the order of 200 MeV
[14], even if the peak cross section is in the nb range for
mt̃ = 60 GeV, see (2), the various resonance peaks are
practically undetectable because their widths are much
smaller than the typical beam energy spread (see also the
discussion of [6]). The sole possibility of a width larger
than the beam energy spread, the Γ = 1 GeV case, as al-
ready discussed, has no peaks as they have been smeared
and thus no visible fine structure is envisaged. The sit-
uation does not change for the value of mt̃ = 100 GeV;
as we can see from Fig. 3 this situation is essentially the
same as the previous one, and the peak cross section is
even smaller than the former by a multiplicative factor of
about 4. With the increase of the center of mass energy
(NLC case) the net result for the cross section detection
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is even worse than before. The beam energy spread is of
the order of 6 GeV [15] and, as seen clearly from Figs. 4
and 5, it is even larger than the energy range used for
the plots by a factor of 4, thus making the detection of
any possible fine structure present in the threshold cross
section impossible.

4 Conclusions

In this letter, we have shown that the bound state effect on
the threshold cross section of a scalar stop bound state is
not negligible, at least for the case of a Coulombic poten-
tial. This effect also turns out to be dramatically different
from the simple Born cross section results for E > 0 [10,
16].

However, because of the large beam energy spread of
the present (LEP2) and future (NLC) e+e− colliders, the
possible structure of the cross section at threshold cannot
be resolved. This confirms our less refined Breit–Wigner
approach of [6], and reinforces our previous result that the
stoponium cannot be detected at present and even future
e+e− colliders.
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J.H. Kühn, T. Teubner, Z. Phys. C 56, 653 (1992); Y.
Sumino et al., Phys. Rev. D 47, 56 (1993)

9. W. Beenakker, R. Hopker, P.M. Zerwas, Phys. Lett. B 349,
463 (1995)

10. K. Hikasa, M. Kobayashi, Phys. Rev. D 36, 724 (1987)
11. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Phys.

Rev. D 18, 3998 (1978); W.J. Marciano, Phys. Rev. D 29,
580 (1984)

12. N. Fabiano, Eur. Phys. J. C 2, 345 (1998)
13. A.A. Penin, A.A. Pivovarov, Nucl. Phys. B 550, 375

(1999); hep-ph/9904278
14. Review of Particle Properties, Eur. Phys. J. C 3, 1 (1998);

http://pdg.lbl.gov/
15. Conceptual Design of a 500GeV e+e− Linear Collider with

Integrated X–Ray Laser Facility, Vol. 1 (1997), edited by
R. Brinkmann, G. Materlik, J. Rossbach, A. Wagner; Ron
Settles, private communication; Marcello Piccolo, private
communication

16. M. Drees, K. Hikasa, Phys. Lett. B 252, 127 (1990)


